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Abstract 
 
A hybrid method of an artificial neural network (ANN) and a support vector machine (SVM) has been used for a 

health monitoring algorithm of a gas turbine engine. The method has the advantage of reducing learning data and con-
verging time without any loss of estimation accuracy, because the SVM classifies the defect location and reduces the 
learning data range. In off-design condition, however, the operation region of the engine becomes wide and the nonlin-
earity of learning data increases considerably. Therefore, an improved hybrid method with the module system and the 
advanced SVM has been suggested to solve the problems. The module system divides the whole operating region into 
reasonably small-sized sections, and the advanced SVM has two steps of the classification. The proposed algorithm has 
been proven to reliably and effectively diagnose the simultaneous defects of the triple components as well as the de-
fects of the single and dual components of the gas turbine engine in off-design condition. 
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1. Introduction 

The gas turbine engine as a system integration of 
various techniques has been used in many fields such 
as aerospace engineering, mechanical engineering, 
electronic and electrical engineering. The manufacture 
and the maintenance of the gas turbine engine are very 
important for safe operations. Recently, researches on 
the diagnosis system of the gas turbine engine have 
been highly active in order to increase the economical 
efficiency in the maintenance. The defect diagnosis 
system generally measures the performance parame-
ters such as pressures and temperatures across each 
component, analyzes a certain tendency, and deter-
mines whether the engine is healthy or not[1-5]. The 
early detection and prediction of engine malfunction 
have many benefits such as preventive maintenance 

and the reduction of maintenance cost and time. It can 
also increase stability and reliability of the engine 
operations.  

Generally, the artificial neural network (ANN), the 
generic algorithm (GA) and the support vector ma-
chine (SVM) have been used to develop the defect 
diagnosis system.[1, 6] The ANN algorithm is able to 
predict the characteristics of uncertain groups based on 
the specific information.[7, 8] The GA is a way of 
solving problems by mimicking the same processes as 
nature uses. It uses the combination of selection, re-
combination and mutation to evolve solutions of prob-
lems. The SVM, which is able to classify and analyze 
the pattern with fewer data, is a functional and effi-
cient method[9]. 

The ANN algorithm has been widely used to solve 
the pattern recognition problem of the defect diagnos-
tic system. However, this tool has many weak points; 
it’s too difficult to know the ending time of learning. 
The most serious problem is the possibility of falling 
in the local minima. Because of these weak points, it 
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becomes very difficult to obtain good convergence 
ratio and high accuracy[10]. To solve these problems, 
the hybrid SVM-ANN method has been suggested[11, 
12]. The SVM has been applied as a sorter of the de-
fect location accompanied with an enormous amount 
of data, and the ANN algorithm has been used to esti-
mate the defect magnitude. This hybrid method has 
advantages of the reduction of learning data and con-
verging time without any loss of estimation accuracy, 
because the SVM classifies the defect location and 
then reduces the learning data range. However, since 
the operation region of the engine becomes wide and 
the nonlinearity of learning data increases considera-
bly in off-design condition, the detecting ability of the 
suggested hybrid method has been deteriorated in case 
of the multiple defects. 

In this work, therefore, an improved hybrid method 
with the module system and the advanced SVM has 
been proposed and tested to overcome the problem. 
The method with the advanced SVM has effectively 
diagnosed the multiple defects in the whole off-design 
region, especially the triple defect case, as well as 
single defects of three major components, the com-
pressor, the gas generator turbine, and the power tur-
bine of the gas turbine engine. A module system has 
been applied to reduce the number of learning data and 
relieve the nonlinearity of input data. As a result, it has 
been shown that the real-time diagnosis using the im-
proved hybrid method for both the single and multiple 
defects of the gas turbine engine in off-design condi-
tions would be possible with reliable and suitable de-
fect estimation accuracy. 
 

2. The hybrid method 

All input data have been classified into several 
classes by the SVM which finds the defect location. 
Each class represents the kind of defect such as single, 
dual and triple defects. The magnitude of classified  

 
 
Fig. 2. Advanced support vector machine. 

 
data has been measured by the ANN algorithm. 

Fig. 1 shows the structure of the hybrid method di-
vided into two parts, the SVM and the ANN. For ex-
ample, suppose that class 1 is the compressor defect 
group and the defect occurred in the compressor; the 
SVM algorithm classifies and labels the input data into 
class 1[11, 12]. 
 

3. Improved method 
3.1 Advanced support vector machine 

The number of learning data in the triple defect 
case is at least six times more than that of the single 
and dual defect cases. When the SVM method diag-
noses the defect locations of the triple defect case, the 
classification time considerably increases. The real-
time estimation, therefore, becomes almost impossi-
ble. To reduce the running time in this case, an ad-
vanced SVM method with two step classifications has 
been proposed. At the first step, the “one vs. one” 
SVM classifies the defect position of the single defect 
and the multiple defects without distinguishment be-

 
Fig. 1. Structure of hybrid method. 
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tween the dual defects and the triple defects.[13, 14] 
At the next step, the multiple defects are classified 
into the dual defects and the triple defects by using 
the “one vs. one” SVM again. If the classified data 
has any defect at the last step, this state means the 
case of the triple defects. The structure of the ad-
vanced SVM method has been shown as Fig. 2. 
 
3.2 The module system 

The number of learning data is enormous and the 
nonlinearity of data also increases in case of off-
design condition. Generally, the ANN learning data in 
the off-design region has been divided by the altitude. 
The divided data has been also split up by the fuel 
mass flow rate and the Mach number. Accordingly, 
the size of learning data becomes larger than that of 
sea-level condition, resulting in decreased conver-
gence ratio. The overall behavior of the ANN method 
becomes poor. It is, therefore, necessary to reduce the 
size of learning data for the good convergence ratio 
without any loss of estimation accuracy. This can be 
solved by application of the module system. The data 
of all off-design regions are not supposed to be 
learned in the module system. The data only near the 
region where the defect is diagnosed by the advanced 
SVM are needed to be learned. That is, the whole 
operating region is divided into reasonable small-
sized sections, the modules. To estimate the defect  

magnitude in the arbitrary operating point of the en-
gine, the data of the specific module including the 
point have been used. Fig. 3 shows the structure of 
the module system. 
 

4. Application 

4.1 Engine Selection and Modeling 

In this study, the improved algorithm has been ap-
plied to the turbo-shaft engine used in the smart UAV. 
On-design and off-design performance data of the 
engine have been generated by the gas turbine simula-
tion program (GSP).[15] The characteristic maps of 
the centrifugal compressor and the turbine maps, 
which are provided by GSP, have been scaled for our 
own purposes.[12] The major components to estimate 
the engine state are the compressor, the gas-generator 
turbine and the power turbine, respectively. The defect 
positions are classified according to the components. 
Class 1 is the reference and normal state. Classes 2~4 
represent the single defect state of each component. 
The dual defect states with two components are repre-
sented through class 5 to class 7. Finally, class 8 repre-
sents the triple defect state of all components. The 
classification is shown in Table 1. 

As the input data of the defect diagnostic algorithm, 
the temperatures across all components and the pres-
sures across the compressor have been obtained by 

 

 
 
Fig. 3. Hybrid method with module system. 
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Table 1. Range of defect diagnostics. 
 

Class no. 1 2 3 4 5 6 7 8

Defect no. 0 1 2 3

Compressor     

GG-Turbine     

P-Turbine     

 
Table 2. Input data and output data of hybrid method. 
 

 Input Output

Compressor 2t
T , 

3t
T

2t
P , 

3t
P c

η  

GG-Turbine 
4t

T , 
7t

T
ggt

η  Hybrid Method 

P-Turbine 
7t

T , 
8t

T
pt

η  

 
GSP. The isentropic efficiency of each component as 
the output has been used to estimate whether the en-
gine has any defect or not. Table 2 shows the input 
and output data of the engine. 

 
4.2 Applying improved hybrid method in off-design 

condition 

The improved hybrid method with the module sys-
tem and the advanced SVM has been applied in off-
design condition. For data learning, the section of data 
has been divided according to the variation of the alti-
tude, the Mach number and the fuel flow rate. The 
altitude has been divided into 21 sections from sea 
level (0 m) to maximum operating altitude 4,800 m. 
Each altitude data includes the variation of the velocity 
and the fuel flow rate. The fuel flow rate and Mach 
number have been divided into 0.032kg/s and 
0.038kg/s, and 0.1, 0.2 and 0.4, respectively. To simu-
late the engine with the defects, the forced defect rep-
resenting the deterioration of engine performance has 
been imposed to learning data. The forced defect has 
been expressed by the minus percentage of isentropic 
efficiency. The defect rate of isentropic efficiency 
varies from 0.0 to -5.0%. For each altitude and Mach 
number, the fuel flow rate must be different in all 
cases. If the same fuel flow rate is used in all cases, the 
fuel lean or rich combustion appears in a certain alti-
tude. Table 3 shows these input data for learning in 
off-design condition. 

The test data of the simulated engine for the reliabil- 

Table 3. Input data for learning on off-design. 
 

Defect  
Location 

Alt. 
(m) 

Mach
no. 

Fuel flow 
rate 

(kg/s) 

Forced defect 
magnitude (%)

Compressor(C)

GG  
Turbine(GGT)

P-turbine (PT)

C+GGT 

C+PT 

GGT+PT 

All  
components 

0, 
240,

~ 
4,800

0.0, 
~ 

0.5 

0.030, 
~ 

0.038 

-0.5, 
-1.0, 

~ 
-5.0 

 
Table 4. Test data. 
 

Test data 

Forced defect magnitude (%) 
Test no. Altitude 

(m) comp GG-T P-T 

1 210 -1.3 -2.6 -3.9 

2 450 -2.3 -3.6 -4.9 

3 690 -3.3 -4.6 -1.9 

4 930 -4.3 -1.6 -2.9 

5 1000 -1.3 -2.6 -3.9 

6 1230 -2.3 -3.6 -4.9 

7 1470 -3.3 -4.6 -1.9 

8 1710 -4.3 -1.6 -2.9 

9 1950 -1.3 -2.6 -3.9 

10 2190 -2.3 -3.6 -4.9 

11 2430 -3.3 -4.6 -1.9 

12 2670 -4.3 -1.6 -2.9 

13 2910 -1.3 -2.6 -3.9 

14 3150 -2.3 -3.6 -4.9 

15 3390 -3.3 -4.6 -1.9 

16 3630 -4.3 -1.6 -2.9 

17 3870 -1.3 -2.6 -3.9 

18 4110 -2.3 -3.6 -4.9 

19 4350 -3.3 -4.6 -1.9 

20 4590 -4.3 -1.6 -2.9 

 
ity confirmation of the improved algorithm has been 
obtained by GSP. The test data have been selected 
arbitrarily among continuous learning data, and the 
amount of performance deterioration has been ran-
domly determined as shown in Table 4. 
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5. Results 

5.1 Decision of defect position 

The SVM has been used to detect the single or dual 
defects in off-design condition. All data have been 
classified 100% as shown in Table 5. 

The average convergence time of defect predictions 
has been about 36 seconds for the cases of the single 
and dual defects. However, the convergence time of 
the triple defect case has been about 1,400 seconds. 
The advanced SVM has been used to solve this prob-
lem. It has classified 100% and shown an improved 
convergence time of about 36 seconds as shown in 
Table 5. The possibility of real-time diagnosis has 
been revealed with this method. 

 
5.2 Estimate of defect magnitude 

The defect magnitude of the data groups has been 
estimated by the ANN with the module system after 
the advanced SVM classification. The estimation has 
been performed by using weights and biases to com-
plete the learning procedure. All kinds of defect cases 
such as the single, the dual and the triple defects, have 
been diagnosed in this application. The RMS defect 
error rate calculated at each altitude has been used to 
estimate the algorithm reliability, which means the 
percentage of the difference between the real defect 
and the calculated defect values. [11, 12] For each test 
data, the relative error rate between the real and calcu-
lated defect magnitudes also has been used in order to 
express the calculation accuracy. The defect magni-
tudes of the single or the multiple defects have been 
imposed according to the values in Table 4, which 
shows there are total 20 sets of the test data number.  

Figs. 4, 5 and 6 show the efficiencies and the rela-
tive error rates of the single defect cases. The square 
symbol filled with black means the efficiency by the 

 
Table 5. SVM classification results. 
 

General Advanced Defect 
position 

Classification 
Accuracy Average convergence time

C 100 % 

GGT 100 % 

PT 100 % 

C+GGT 100 % 

C+PT 100 % 

GT+PT 100 % 

36 s 36 s 

C+GT+PT 100 % 1400 s 36 s 

  
Fig. 4. Estimate efficiencies and relative error rate of com-
pressor. 
 

  
Fig. 5. Estimate efficiencies and relative error rate of gas 
generator turbine. 
 

  
Fig. 6. Estimate efficiencies and relative error rate of Power 
Turbine. 
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Fig. 7. Estimate efficiencies and relative error rate of com-
pressor and GG-Turbine. 

 
imposed defect while the diamond symbol reveals the 
calculated efficiency (the left-hand side of the y-axis). 

The relative error rate of each test case is expressed 
by the bar graph (the right-hand side of the y-axis). 
The x-axis represents the test data number. In the 
single defect diagnoses, the RMS defect error rates of 
each component have been shown about 2.3%, 3.5%, 
and 2.9% for the compressor, the G-G turbine, and 
the power turbine, respectively. 

The efficiencies and the relative error rates of the 
dual defect cases are shown in Figs. 7, 8 and 9, which 
show the multiple defects of the compressor and G-G 
turbine, the compressor and power turbine, the G-G 
turbine and power turbine, respectively. In a similar 
manner as the single defect, the triangle and square 
symbols filled with black represent the real efficiency. 
The hollowed diamond and circle mean the calculated 
efficiency. From the dual defect diagnoses, the RMS 
defect error rates have been revealed as about 3.1% 
and 2.8%, 2.8% and 2.8%, and 2.3% and 3.6% for the 
compressor and G-G turbine, the compressor and 
power turbine, G-G turbine and power turbine, re-
spectively.  

Figs. 10, 11 and 12 show the triple defect cases. 
The triple defect case has been the representative 
result by the improved hybrid method with the mod-
ule system and the advanced SVM. Similar to the 
above, the RMS defect error rates have appeared as 
3.7%, 1.3%, and 2.8% for the compressor, the G-G 
turbine, the power turbine, respectively. The results in 
all figures have shown that the RMS error rates of all 
cases have less than 5% difference between the im-
posed and calculated defect magnitudes. 

  
Fig. 8. Estimate efficiencies and relative error rate of com-
pressor and power turbine. 
 

  
Fig. 9. Estimate efficiencies and relative error rate of GG-
turbine and power turbine. 
 

 
 
Fig. 10. Estimate efficiencies and relative error rate of Com-
pressor in triple defect case. 
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Fig. 11. Estimate efficiencies and relative error rate of GG-
turbine in triple defect case. 

 

  
Fig. 12. Estimate efficiencies and relative error rate of Power 
turbine in triple defect case. 

 
In Table 6, for example, the defect mean error rates 

of the non-module learning and the module learning 
of the hybrid method have been compared at 1,000m. 
For the single defect cases, the defect error rates have 
decreased from 12.6% to 4.5% for the compressor, 
from 16.5% to 6.7% for the G-G turbine, and from 
20.2% to 2.1% for the power-turbine, respectively. 
The defect error rates for the dual defect cases have 
been reduced from 37.6% and 9.1% to 4.0% and 
3.3% for the compressor and G-G turbine, from 
31.9% and 44.3% to 8.5% and 2.2% for the compres-
sor and power turbine, and from 17.8% and 33.3% to 
2.2% and 3.1% for the G-G turbine and power turbine, 
respectively. Also, for the triple defect case, the defect 
error rates have decreased from 39.9%, 9.1% and  

Table 6. Comparison of defect mean error rates between non-
module and module learning of hybrid method. 
 

Defect mean error rate (%) 
 Learning of all data For 

1,000m 
Learning of one module 

for 1000m 
C 12.55 4.47 

GG-T 16.54 6.16 

P-T 20.21 2.05 
C/ 

GG-T 37.61 9.08 4.04 3.25 

C/ 
P-T 31.91 44.27 8.48 2.16 

GG-T/
P-T 17.82 33.29 2.19 3.09 

C GG-T P-T C GG-T P-TAll 
component 39.92 9.06 107.49 7.24 0.79 2.83

 
107.5% to 7.2%, 0.8%, 2.8% for the compressor, the 
G-G turbine, and the power turbine, respectively. The 
results show that the estimated accuracy of the hybrid 
method with the module system has been far better 
than that of the hybrid method without the module 
system. It is also shown that the suggested method 
would be reliable and effective for the multiple defect 
diagnosis of the gas turbine engine in off-design con-
dition. 
 

6. Conclusion 

A hybrid method of the artificial neural network 
(ANN) and the support vector machine (SVM) has 
been used for engine health monitoring. The method 
has the advantage of a reduction of learning data and 
converging time without any loss of estimation accu-
racy, because the SVM classifies the defect location 
and can reduce the learning data range. The general 
ANN has been used only for the estimation the defect 
magnitude with the reduced data range. The aug-
mented learning data due to the off-design condition, 
however, increase the non-linearity of the input data 
and the convergence time of the ANN algorithm. In 
this study, therefore, an improved hybrid method with 
module system and advanced SVM has been proposed 
for the multiple defect diagnosis of the gas-turbine 
engine in off-design condition. 

The advanced SVM as a classifier for the detection 
of the defect locations, which has one more step of the 
classification compared to the general SVM, has been 
used to find the locations of the multiple defects as 
well as the single defects. A module system has been 
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suggested to reduce the non-linearity and solve the 
increased convergence time problem. The learning 
data of the whole off-design region have been divided 
into appropriate-sized sections, the modules. To esti-
mate the defect magnitude in the arbitrary operating 
point of the engine, the learning data of the specific 
module including the point have been used. In the 
developed hybrid technique for the multiple defect 
diagnosis, the higher classification accuracy by de-
crease of the nonlinearity of the input data has been 
observed, and the error rate has decreased, compared 
with the existing hybrid method. Overall, the proposed 
algorithm, the improved hybrid method with the mod-
ule system and the advanced SVM, has shown good 
performance in diagnosis of the defects of triple com-
ponents as well as those of the single and dual compo-
nents of the gas turbine engine in off-design condition. 
The real-time diagnoses for the single and multiple 
defects in the whole off-design region have been ex-
pected with reliable and suitable accuracy of the defect 
estimation. 
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Nomenclature----------------------------------------------------------- 

ANN : Artificial Neural Network 
b  : Standard vector of hyper-plane 
D  : Defect magnitude 
d  : Desired output 
E  : Cost Function error value 
GA : Genetic Algorithm 
GG-T : Gas generator turbine 
HPC : High-pressure compressor 
HPT : High-pressure turbine 
LPC : Low-pressure compressor 
MLP : Multi layer perceptron 
N  : Data set number 
O  : Objective output 
P-T : Power turbine 
P : Total pressure 
Q  : Lagrange objective function 
SFC : Specific fuel consumption 
SVM : Support Vector Machine 

T : Total temperature 
w  : Direction vector of hyper-plane 
W  : Intensity 
y  : Labels 
α  : Lagrange Multiplier 
 
Subscripts 

cal : Calculated defect 
kj : kjth connection of neuron 
pk : kth row 
real : Real defect 
t2 : Compressor inlet 
t3 : Combustor inlet 
t4 : GG-turbine inlet 
t7 : Power turbine inlet 
t9 : Power turbine outlet 
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